
Sean	Cooke	
SeanCooke8892@gmail.com

�1!

Multithreaded	Linear	Equation	Solver	
README	

Purpose	
Gauss-Jordan	elimination	is	an	algorithm	used	to	solve	a	system	of	linear	equations	
that	can	be	parallelized.		We	will	be	creating	speedup	curves,	recording	speedup	and	
recording	ef?iciency	for	parallel	solutions	to	Gauss-Jordan	using	OpenMP	and	Cilk.	!
A	speedup	curve	is	a	graph	of	program	runtime	versus	number	of	threads	used.		The	
steeper	the	negative	gradient	of	the	speedup	curve,	the	better	the	parallelization	of	
the	algorithm.		The	data	point	for	number	of	threads	used	equals	1	is	the	runtime	of	
the	most	ef?icient	sequential	algorithm.	!
Let	T(1)	be	the	runtime	of	the	most	ef?icient	sequential	algorithm	and	T(p)	be	the	
runtime	of	the	parallel	algorithm	on	a	p	processor	machine.		The	formula	for	
Speedup	S	is	shown	below:	!
	 S	=	T(1)	/	T(p)	!
The	formula	for	ef?iciency	E	is	shown	below:	!
	 E	=	S	/	p	

Experiment	
Descriptions	of	the	four	parallel	Gauss-Jordan	elimination	algorithms	written	are	
shown	below:	!

!
When	static	scheduling	is	used,	each	thread	is	allocated	a	“chunk	size”	number	of	
contiguous	matrix	rows.		In	OpenMP	Cyclic,	each	thread	is	allocated	all	rows	
adjacent	to	one	row	(3)	and	in	OpenMP	Blocked	each	thread	is	allocated	10	
contiguous	matrix	rows.	!
When	dynamic	scheduling	is	used,	each	thread	is	allocated	an	equal	number	of	
matrix	rows.		When	a	thread	?inishes	computing	its	rows,	it	will	take	rows	from	

Algorithm Scheduling Chunk	Size

OpenMP	Cyclic Static 3

OpenMP	Blocked Static 10

OpenMP	Dynamic Dynamic Number	of	Processors	(72)

Cilk Dynamic Number	of	Processors	(72)



	 	 	

threads	that	have	not	yet	?inished,	decreasing	runtime.		Cilk	uses	dynamic	
scheduling	by	default.	!
Results	
The	results	after	running	gauss	on	a	2,000x2,000	matrix	on	
node2x18a.csug.rochester.edu	(72	processors),	varying	t	between	1	and	100,	are	
shown	below.		The	red	line	indicates	where	the	number	of	threads	is	equal	to	the	
number	of	processors.	!

�  !

!
!!!!

Algorithm Speedup EfCiciency

OpenMP	Cyclic 1.139603 0.01582782

OpenMP	Blocked 3.304924 0.04590173

OpenMP	Dynamic 1.788172 0.02483572

Cilk 2.397222 0.03329475

https://github.com/SeanCooke/parallel-gauss-jordan


Sean	Cooke	
SeanCooke8892@gmail.com

�3!
Conclusions	
Since	all	results	were	taken	on	the	same	machine,	there	is	a	direct	relationship	
between	speedup	and	ef?iciency.	!
The	most	ef?icient	algorithm	was	OpenMP	Blocked.		This	is	because	allocating	a	
contiguous	chunk	of	matrix	rows	of	appropriate	size	bene?ited	by	decreasing	cache	
misses	and	therefore	decreasing	runtime.		Different	performance	for	OpenMP	
Blocked	could	be	seen	by	varying	“chunk	size”.	!
The	least	ef?icient	algorithm	was	OpenMP	Cyclic.		Despite	also	being	an	OpenMP	
algorithm	with	static	scheduling,	signi?icantly	less	speedup	is	seen	than	with	
OpenMP	Blocked.		This	is	because	“chunk	size”	for	OpenMP	Cyclic	was	too	small	and	
suffered	from	increasing	cache	misses	and	therefore	increasing	runtime.	!
The	middle	two	algorithms	in	terms	of	ef?iciency	were	OpenMP	Dynamic	and	Cilk	
both	of	use	dynamic	scheduling.		This	is	a	simpler	implementation	for	the	
programmer	as	“chunk	size”	need	not	be	?ine	tuned	as	all	threads	are	allocated	an	
equal	number	of	matrix	rows.		Cilk’s	implementation	of	dynamic	scheduling	is	more	
ef?icient	than	Open	MP’s	implementation	of	dynamic	scheduling.


